::p_load(maptools, sf, raster, spatstat, tmap) pacman
In-class Exercise 4
Getting started
Things to learn from this code chunk.
Importing spatial data
<- st_read("data/Geospatial/child-care-services-geojson.geojson") %>%
childcare_sf st_transform(crs = 3414)
Reading layer `child-care-services-geojson' from data source
`C:\Users\kwekm\Desktop\SMU Year 3 Semester 2\IS415 Geospatial Analytics and Applications\KMRCrazyDuck\IS415-KMR\In-class_Ex\Data\Geospatial\child-care-services-geojson.geojson'
using driver `GeoJSON'
Simple feature collection with 1545 features and 2 fields
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 103.6824 ymin: 1.248403 xmax: 103.9897 ymax: 1.462134
z_range: zmin: 0 zmax: 0
Geodetic CRS: WGS 84
<- st_read(dsn = "data/Geospatial", layer="CostalOutline") sg_sf
Reading layer `CostalOutline' from data source
`C:\Users\kwekm\Desktop\SMU Year 3 Semester 2\IS415 Geospatial Analytics and Applications\KMRCrazyDuck\IS415-KMR\In-class_Ex\Data\Geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 60 features and 4 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 2663.926 ymin: 16357.98 xmax: 56047.79 ymax: 50244.03
Projected CRS: SVY21
<- st_read(dsn = "data/Geospatial",
mpsz_sf layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source
`C:\Users\kwekm\Desktop\SMU Year 3 Semester 2\IS415 Geospatial Analytics and Applications\KMRCrazyDuck\IS415-KMR\In-class_Ex\Data\Geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
tmap_mode('view')
tm_shape(childcare_sf)+
tm_dots()
tmap_mode('view')
tm_shape(childcare_sf)+
tm_dots(alph =0.5,
size =0.01) +
tm_view(set.zoom.limits = c(11,14))
tmap_mode('plot')
<- as_Spatial(childcare_sf)
childcare <- as_Spatial(mpsz_sf)
mpsz <- as_Spatial(sg_sf) sg
4.5.2 Converting the Spatial* class into generic sp format
<- as(childcare, "SpatialPoints")
childcare_sp <- as(sg, "SpatialPolygons") sg_sp
4.5.3 Converting the generic sp format into spatstat’s ppp format
<- as(childcare_sp, "ppp")
childcare_ppp childcare_ppp
Planar point pattern: 1545 points
window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units
plot(childcare_ppp)